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Introduction

Higher-harmonic cavities (HHCs) play a crucial role for stable operations of present and future low-
emittance storage rings. The primary benefic effect provided by the HHC is bunch lengthening without
energy spread increase, with consequent beam lifetime improvement and reduction of the effect of intrabeam
scattering on the transverse emittance [2]. Besides bunch lengthening, the highly nonlinear potential well
distortion produced by the HHC introduces a strong dependence of the synchrotron tune on the amplitude
of synchrotron oscillations. The induced anharmonic motion with enhanced synchrotron tune spread
provides a powerful mechanism, known as Landau damping, for the suppression of collective instabilities.
Moreover, the increase in bunch length and synchrotron tune spread can enhance the stabilizing effect of
positive chromaticity on the transverse oscillations and help to stabilize higher-order head-tail modes [2].
The option considered for the NSLS-II storage ring is to operate with a passive superconducting 3HC
[3], [4], [5], a choice supported by the successful development and operation of the superconducting 3HC
system at the ELETTRA [6] and SLS [7] storage rings, a system that has been developed in the framework
of the SUPER-3HC project [8]. The SUPER-3HC project represented the first superconducting application
of a HHC system in storage rings, taking advantage of the very high quality factor of the superconducting
cavity and the associated narrow bandwidth, allowing for the tuning of the 3HC very near to the third
harmonic of the beam, without exciting longitudinal instabilities [6]. The success of the 3HC operation at
the ELETTRA storage ring is substantiated by a beam lifetime improvement by more than a factor of
three with respect to the nominal value, an improvement that has led to a change in the refilling frequency
of the storage ring, allowing a refilling every 48hr instead of every 24hr, with benefit for the reliability and
stability of user’s operations and relevant benefit even for the machine thermal stability [6]. The success
with the operation of a 3HC at the SLS storage ring is substantiated by a bunch lengthening up to a factor
of three and a beam lifetime increase greater than a factor of two, achieved with stable conditions at the
design current of 400 mA [7].
The success experienced at the ELETTRA and SLS storage rings has clearly shown that the very high
quality factor of the superconducting HHC renders the performance of the HHC system less sensitive
to high-order modes (HOMs) driven longitudinal coupled bunch instabilities, which is a major issue
with normal conducting HHCs, where powerful longitudinal feedback systems are often needed for stable
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operations. Performance limiting factors, however, such as transients effects induced by non uniform filling
patterns and the beam phase instability [9], can be detrimental for stable HHC operations, and need to
be carefully investigated with detailed design studies, a need that is justified also by the fact that stable
conditions of operation are often very sensitive to the machine parameters.
Accurate numerical simulations represent an essential part of the aforementioned design studies, with their
goal to determine feasible conditions of operation and their range of applicability. To this end, the stability
and performance of the passive superconducting 3HC system for the NSLSI-II storage ring is studied
numerically with the parallel, particle tracking code SPACE [10], which allows to follow self-consistently
the dynamics of h bunches, where h in the number of RF buckets, each with a distinct bunch population.
The specific goal of the numerical simulations is to determine stable HHC cavity settings and to study the
performance limitation due to a gap in the uniform filling, which represent the nominal NSLS-II mode of
operation.
The paper is organized as follows. In Sect.1 we review the conditions of operation of an HHC system
assuming its stability. We first discuss the longitudinal dynamics with an active HHC and the conditions
that lead to a quartic potential in the limit of small oscillations, together with formulae giving the
bunch lengthening factor and the synchrotron frequency dependence on the amplitude of the synchrotron
oscillations. We discuss next passive HHC operations with uniform fillings, and distinguish the case
of normal-conducting HHC, where optimal conditions of operation can be met, from the case of super-
conducting HHC, where optimal conditions of operation can be satisfied only approximately. In Sect.2
we address the stability of the passive superconducting 3HC system of the NSLS-II storage ring via
self-consistent simulations with code SPACE. The case of nominal fractional filling of 80% is compared
with the case of fractional filling of 90% and with the uniform filling case. It is shown that for values
of the detuning frequency in the neighborhood of the good working point discussed in Sect.2, unstable
regimes of oscillation are found, with detuning frequency threshold dependent on the gap in the filling.
It is shown that the instability regime is characterized by dipole and quadrupole modes of oscillation
exhibiting asymptotically nonlinear saturation. A discussion of the average bunch lengthening, together
with the degree of uniformity across the bunch train, achievable under stable conditions as a function of
the fractional filling concludes the paper.

1 Operations with Higher-Harmonic Cavities

In the discussion of the theoretical conditions for optimal bunch lengthening, we assume a stable, beam
loading compensated HHC system characterized by an equilibrium multi-bunch configuration. Radiation
damping and quantum fluctuations are excluded from the analysis. The overall stability of the HHC
system, including radiation damping and quantum fluctuations, together with the inclusion of a model
for beam loading compensation, will be addressed in Sec.IV with time dependent simulations of the
Vlasov-Fokker-Planck equation.

1.1 Active Higher-Harmonic Cavity

We assume that the voltage V (τ) seen by a particle in the beam with arrival time τ is

V (τ) = Vrf [sin(ωrfτ + φs)− r sin(mωrfτ + φm)]− U0
e

=: Vc(τ)− U0
e
, (1)

where Vrf is the amplitude of the voltage of the main RF cavity, ωrf = hω0, where h is harmonic number
and ω0 the angular revolution frequency, m is the order of the HHC and r the ratio of HHC to main
cavity amplitude voltage, U0 energy loss per turn, e the electron charge, φs and φm the phases of the
synchronous particle in the main and HHC respectively. Here Vc(τ) is the total RF voltage produced by
the main RF cavity and HHC.
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Parameter Symbol Value Unit
Energy reference particle E0 3 GeV
Average current I0 500 mA
Gap in the uniform filling g 260
Harmonic number h 1320
Circumference C 792 m
Bunch duration στ 14.5 ps
Energy spread σp 0.00087
Energy loss per turn U0 674 keV
Momentum compaction α 0.00037
Revolution frequency f0 378.5 kHz

Table 1: NSLSII storage ring parameters

RF parameters main cavity system (2 cavities)
Per Cavity Parameters Symbol Value Unit

Frequency ωrf 2π×499.68 MHz
Voltage Vrf 1.7 MV

Loaded shunt impedance RM 2.97 MΩ
Loaded quality factor QM 66817

RF parameters HHC system (1 cavity)
Per Cavity Parameters Symbol Value Unit

Frequency mωrf 2π×1499.04 MHz
Shunt impedance RH 22880 MΩ
Quality factor QH 2.6× 108

Table 2: RF parameters main and HHC (m=3)

The longitudinal dynamics in the double RF system described by Eq.(1) has been comprehensively
discussed, together with optimal conditions for bunch lengthening, by Hofmann and S. Myers in 1980 [13].
See also [15]. Here we summarize the main results.
To compensate for the energy loss U0, we require that the voltage seen by the synchronous particle is zero,
i.e. V (0) = 0. In addition, we require V ′(0) = V ′′(0) = 0, where ′ = d/dτ . These conditions imply

sinφs = r sinφm + U0
eVrf

, (2)

cosφs = rm cosφm, (3)
sinφs = rm2 sinφm, (4)

which, solved for φs, φm and r give

sinφs = m2

m2 − 1 sinφs0, sinφs0 = U0
eVrf

, (5)

tanφm = m sinφs0√
(m2 − 1)2 −m4 sin2 φs0

, (6)

r = 1
m

√
1− m2

m2 − 1 sin2 φs0, (7)

where we introduced φs0, the synchronous phase in absence of the HHC. With the use of Eq. (6) and Eq.
(7), we notice that the voltage V (τ) can be equivalently expressed as a function of φs eliminating φm and r

V (τ) = Vrf [sin(φs + ωrfτ)− sinφs −
sinφs
m2

(
cosmωrfτ − 1

)
− cosφs

m
sinmωrfτ ]. (8)

With the voltage given by Eq.(1), from the Hamiltonian

H(τ, δ) = η

2δ
2 + U(τ),

U(τ) = eVrf
E0T0ωrf

[
cos(ωrfτ + φs)− cosφs + r

m
cosφm −

r

m
cos(mωrfτ + φm) + ωrfτ sinφs0

]
, (9)

follow the longitudinal equations of motion

τ̇ = ∂H

∂δ
= ηδ,

δ̇ = −∂H
∂τ

= eVrf
E0T0

[
sin(ωrfτ + φs)− r sin(mωrfτ + φm)− sinφs0

]
, (10)
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where ˙ = d/dt, η = α − γ−2
0 is the slippage factor, where γ0 is the Lorentz factor, δ = (E − E0)/E0 is

the relative energy deviation with respect to the synchronous particle with energy E0, and the arbitrary
constant in the definition of U(τ) has been chosen in order to satisfy U(0) = 0. Since U does not depend
explicitly on time, H is a constant of motion and setting E = H we have

δ(τ) = ±
√

2
η

(E − U(τ)), E = const. (11)

In Fig.1a we show the potential energy U(τ) without HHC cavity (red trace) and with HHC (blue trace)
with the NSLS-II storage ring parameters (see Table 1 and 2) satisfying (5)-(7). In Fig.1b we show the
corresponding phase space portrait for E = 0.3. With optimal conditions satisfied, the voltage V (τ)
induces a bunch lengthening without an increase of the energy spread. According to Table 1 and 2,
r = 0.329 ≈ 1/3, thus the peak voltage induced by the harmonic cavity is roughly one third the peak
voltage Vrf of the main cavity. In the case of no energy loss (U0 = 0) the conditions (2)-(4) simplify to
φs = φm = 0 and r = 1/m. In Fig.2a we plot the potential energy U(τ) for m = 3 and different values of
r. For r = 4/9 the potential energy has two stable fixed points close to ±150ps.
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Figure 1: a) Potential energy U(τ) without HHC (red line) and with HHC (blue line) with parameters of
the NSLS-II storage ring (see Table 1 and 2) satisfying Eq. (5)-(7). b) Phase space portrait corresponding
to a) for E = 0.3. The optimal conditions satisfied by the voltage V (τ) induce a bunch lengthening without
an increase of the energy spread. c) Comparison of exact and approximated results for U(τ) for the case
with the HHC. d) Comparison of the phase space portraits for the case shown in c) for E = 1. The quartic
approximation to the exact potential is quite accurate in the range |τ | ≤ 150ps.

1.1.1 Small Oscillations

For small oscillations (τ � 1) the potential energy U(τ) without HHC can be approximated by a quadratic
function of τ

U(τ) = −eVrfωrf cosφs0
2E0T0

τ2 = ω2
s0

2η τ
2, (12)

ωs0 =
√
−ηeVrfωrf cosφs0

E0T0
, (13)

while with the addition of the HHC the potential given by Eq.(9) can be approximated by a quartic

U(τ) = −
eVrf (m2 − 1)ω3

rf cosφs
24E0T0

τ4. (14)

For a potential energy satisfying U(−τ) = U(τ) and U(τ) > 0 for τ > 0, the trajectory is confined in the
region [−τM , τM ]× [−δM , δM ] where τM and δM satisfy U(τM ) = E and ηδ2

M/2 = E respectively, thus the
amplitude of the trajectory is d = 2τM . In Fig.1c we compare the exact and approximated U(τ) including
the harmonic cavity and in Fig.1d) we compare the corresponding phase space portrait for E = 1. We
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see that the approximation is quite good in the range |τ | ≤ 150ps. It can be shown that the synchrotron
frequency ωs for the quartic potential (14) reads

ωs(τM ) = π

2

√
m2 − 1

6

√
cosφs
cosφs0

ωrfωs0

K(1/
√

2)
τM , (15)

where K is the complete integral of the first kind. The dependence of the synchrotron frequency on τM
provides Landau damping for beam stability. In Fig.2b we plot ωs as a function of τM . It can also be
shown that the bunch lengthening factor u for an equilibrium distribution ρe in the quartic potential (14)
reads

u := στL
στm

=
(Γ(3/4)

Γ(1/4)
)1/2( 24 cosφs0

(m2 − 1)ω2
rf cosφs

)1/4 1
√
στm

, (16)

where Γ is the Gamma function, στm = ησδ/ωs0 is the equilibrium bunch length with only the main cavity,
and στL is the equilibrium bunch length with the harmonic cavity. The bunch lengthening factor u as
a function of στm is plotted in Fig.2c. For the NSLS-II parameters with στm = 14.5ps we have a bunch
lengthening factor u = 3.7.
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Figure 2: a) Potential energy U(τ) in the active case (m = 3) and for no energy loss (U0 = 0). In this
case the optimal conditions imply φs = φm = 0 and r = 1/m. Several values of r are plotted. For r = 4/9
the potential energy has two stable fixed points close to ±150ps. b) Synchrotron frequency ωs for the
quartic potential (red line) and synchrotron frequency ωs0 for the quadratic potential (blue line). The
dependence of the synchrotron frequency on the maximum amplitude τM provides Landau damping for
beam stability. c) Bunch lengthening u vs. bunch length with main cavity alone στm . For the NSLS-II
parameters with στm = 14.5ps the bunch lengthening is u = 3.7.

1.2 Passive Higher-Harmonic Cavity

For passive HHC operations, the total RF voltage is given by the sum of the voltage produced by the
powered main cavity and the beam loading voltage induced by the beam in both cavities. We assume in
this section that the main cavity is beam loading compensated.

1.2.1 Operations with Normal-Conducting Cavities

In the case of stationary bunches uniformly distributed around the ring, and for a narrow-band resonator
wake with frequency ωr, shunt impedance Rs and quality factor Q, the voltage acting on the beam reads

Vc(τ) = Vrf sin(φs + ωrfτ)− iimRs cosψ cos(ψ +mωrfτ), (17)

where iim = 2I0ρ̃(ωr) and the detuning angle ψ satisfies

tanψ = 2Qδ, δ = 1
2
( ωr
mωrf

− mωrf
ωr

)
≈ ωr −mωrf

mωrf
. (18)
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Here ρ̃(ω) is the Fourier transform of the bunch density ρ(τ) satisfying ρ(−τ) = ρ(τ). For Gaussian
bunches iim = 2I0e

− 1
2 (mωrfστ )2 .

Imposing the same the conditions (2)-(4) satisfied by the active HHC, by comparing (1) and (17) it follows
(0 < φs < π =⇒ 0 < ψ < π/2 =⇒ cosψ > 0)

tanψ = − cotφm = −m cotφs, (19)

Rs = rVrf
iim cosψ = Vrf sinφs

iimm2 cos2 ψ
, (20)

where we used sinφm = cosψ (tanψ = − cotφm =⇒ ψ = φm − π/2 =⇒ sinφm = cosψ.) Therefore the
conditions for passive HHC operations corresponding to the active case (5)-(7) are

sinφs = m2

m2 − 1 sinφs0, (21)

tanψ = −

√
(m2 − 1)2 −m4 sin2 φs0

m sinφs0
, (22)

Rs = Vrf (m2 − 1)(1− sinφs0)
iimm2 sinφs0

. (23)

An important difference to the active case is that Rs is uniquely determined and a function of the beam
current I0. Notice, however, that these conditions do not impose any constraint on the value of Q, therefore
do not determine uniquely the detuning frequency ∆ω = ωr −mωrf .
The optimal parameters for passive HHC operations of the NSLS-II storage ring according to Table 1 and
2 are therefore

sinφs = 0.4592,
tanψ = 5.8 =⇒ ψ = 80.22◦,
Rs = 9.02MΩ. (24)

1.2.2 Operations with Super-Conducting Cavities

According to Table 2, the shunt impedance of the HHC is RH = 22880MΩ, much bigger than Rs as
determined by Eq.(24), so the optimal conditions for passive operations can not be met. Good conditions,
however, can be found by comparing Eq.(1) and Eq.(17) at τ = 0, which gives Rs = rVrf/(iim cosψ), and
by noticing from Eq.(7) that r ≈ 1/m, since to good approximation sinφ2

s0 � 1. We therefore impose on
the detuning angle ψ the condition cosψ = Vrf/(miimRH), which implies that the detuning frequency
∆ωH approximately satisfies

∆ωH = m2ωrf iimRHVrf
2QHVrf

, (25)

where we used Eq.(18) and the fact that cosψ � 1. With parameters listed in Table 1 and 2, it follows
that ∆ωH = 2π × 58.24kHz.

2 Numerical Simulations
With the inclusion of a model for beam loading compensation, time dependent simulations of the Vlasov-
Fokker-Planck equation allow for the study of the overall stability of the HHC system. Moreover, numerical
simulations allow for the study of transient effects induced by arbitrary multi-bunch configurations, such as
a gap in the uniform filling pattern for ion clearing, which corresponds to the nominal configuration of the
NSLS-II storage ring. The numerical simulations of the Vlasov-Fokker-Planck equation discussed in this
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paper are done with the parallel code SPACE, a particle tracking code that allows for the simultaneous
study of short- and long-range wakefield effects in storage rings. The general strategy adopted by SPACE
to study multibunch effects is to distribute each bunch to one processor, each with N simulations particles
representing the bunch population, thus performing the short- and long-range wakefield calculation in
serial and parallel respectively. For more details on the code SPACE see [10]. For steady state beam
loading compensation, the algorithm implemented in SPACE is based on the standard phasor diagram,
shown in Fig. 3 with parameters of one of the operational settings of the NSLS-II storage ring. The
numerical simulations discussed in this paper have been done on the supercomputers Cori and Edison at
NERSC [14].

Figure 3: RF phasor of the NSLS-II storage ring during operations with a stored beam current I0 = 300mA,
Vrf = 3000kV, φs = 164.5◦, θL = −17◦, total forward power Pg = 340kW, total reflected power Pr = 91kW,
power delivered to the beam Pn = 240kW, Vb = 2062kV, Vg = 2132kV, detuning angle ψ = 60◦,
ωr = 2π × 499.68MHz, ∆ω = ωr − ωrf = −5.5kHz, ig = 1241mA, i0 = 864mA, it = 1746mA, energy loss
per turn U0 = 725keV.

The equations of motion for bunch n (n = 0, · · · , h − 1), shown here without radiation damping and
quantum fluctuations, for the general NSLS-II operations with two main cavities and one harmonic cavity
read

τ̇ = ηδ,

δ̇ = e

E0T0

[ 2∑
i=1

Vgr,i cos Ψi sin(ωrfτ + φs − θL,i + Ψi)− Vn(τ, s)− U0
e

]
, (26)

where Vgr,i, Ψi and θL,i (i = 1, 2) correspond to the generator voltage, detuning angle and load angle
of the two main cavities respectively, and Vn(τ, s) is the total beam loading voltage acting on bunch
n. The numerical simulations discussed in this paper assume the two main cavities with same beam
loading parameters, which correspond to the standard mode of operation of the NSLS-II storage ring. By
projecting the current phasors shown in Fig. 3 along and perpendicular to the RF voltage phasor, Vgr and
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Ψ satisfy

tan Ψ =
(
1 + iim,M

i0
sinφs

)
tan θL + iim,M

i0
cosφs, (27)

Vgr = V rf

cos θL

(
1 + iim,M

i0
sinφs

)
, (28)

where iim,M = 2I0ρ̃(ωrf ) is the image current in the main cavity, and i0 = Vrf/RM . In the analysis of
the performance of the NSLS-II HHC system, we study first the case with a uniform filling pattern, and
compare the results with the nominal case, which correspond to a gap of 260 bunches, (80% fractional
filling), and with the case with a gap of 130 bunches (90% fractional filling). In the discussion that follows
we omit the subscript H to label the detuning frequency of the HHC.

2.1 Uniform Filling

In Fig.4 we show numerical simulations for values of the HHC detuning frequency ∆f = 45kHz, 55kHz
and 65kHz, above and below the value of 58.24kHz calculated in Section 1.2.2 for good bunch lengthening
conditions. The longitudinal density of the bunches after 100, 000 turns is shown in Fig.4a for ∆f = 45kHz,
in Fig.4b for ∆f = 55kHz and Fig.4c for ∆f = 65kHz. The bunch lengthening is uniform across the bunch
train for ∆f = 55kHz and ∆f = 65kHz, with values στ = 50ps and στ = 36ps respectively, as shown in
Fig.4e and Fig.4f for bunch n = 0, 260, 520, 780 and 1039, corresponding to the bunch lengthening factors
u = 3.45 and u = 2.48. For ∆f = 45kHz, the longitudinal density of the bunches show a double peaked
structure and a non-uniform bunch lengthening, as shown in Fig.4a and Fig.4l. Long term simulations up
to 500, 000 turns, as plotted in Fig.4a and Fig.4g, show that for ∆f = 45kHz the HHC system is weakly
unstable, signing the transition to an "overstretching" regime, with average bunch length across the train
of ≈ 70ps. The potential well of bunch n = 0, showing two local minima, is shown by the red trace in
Fig.4n.

2.2 Gap in the Uniform Filling: g = 130 and g = 260

The case of a gap in the uniform filling corresponds to a train of M = h − g bunches, where h is the
harmonic number and g is the gap. The case with nominal gap, g = 260, corresponding to a 80% filling
fraction, is compared with the case g = 130, corresponding to a 90% filling fraction. The main effect
introduced by a gap in the uniform filling in a monotonic variation of the bunch centroid across the train,
and a reduced, non uniform bunch lengthening. Fig.5 and Fig.6 show numerical simulations up to 100, 000
turns with gaps g = 130 and g = 260 respectively, for the same HHC detuning frequencies of the uniform
case. The monotonic variation of the bunch centroid across the train is evident from the longitudinal
density of the bunches shown in Fig.5a-c, from the time evolution of the bunch centroids shown in Fig. 5g-i,
and from Fig. 5m, where it can be noticed that the range of variation of the bunch centroids increases with
the decrease of the HHC detuning frequency. Fig.5d-f and Fig.5l show the non uniform bunch lengthening
across the train, with a similar average value στ = 35ps for the different detuning frequencies. We notice
that for ∆f = 45kHz the bunches in the center of the train have longer bunch length than the bunches in
the periphery of the train. The case of nominal gap, g = 260, is discussed in Fig.6. A detuning frequency
threshold is observed in this case. For detuning frequencies above the threshold, as shown for ∆f = 65kHz
in Figs.6c, f and l) a stable equilibrium is reached after 100, 000 turns, with average bunch length across the
train στ ≈ 27ps, while for detuning frequencies below threshold, as shown in Figs.6a), d) for ∆f = 45kHz
and Figs.6b), e) and h) for ∆f = 55kHz, an unstable regime with saturation is observed, with both the
bunch lengths and bunch centroids exhibiting a well defined mode of oscillation. The numerical simulations
discussed so far have been done with load angle θL = 0. In attempt to improve stability, the two unstable
configurations at the nominal gap g = 260 for ∆f = 45kHz and 55kHz have been simulated with θL 6= 0.
The results are shown in Fig.7 for ∆f = 45kHz and Fig.8 for ∆f = 55kHz. In both cases we see that the
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Figure 4: Numerical simulations in the case of uniform filling with detuning frequency ∆f = 45kHz,
55kHz and 65kHz. Longitudinal density of the bunches after 500, 000 turns for ∆f = 45kHz a), and after
100, 000 turns for ∆f = 55kHz b), and for ∆f = 65kHz c). The bunch lengthening is uniform across the
bunch train for ∆f = 55kHz e), and ∆f = 65kHz f), with values στ = 50ps and στ = 36ps respectively. For
∆f = 45kHz, the longitudinal density of the bunches show a double peaked structure a) and a non-uniform
bunch lengthening l). g) h) and i) show the time evolution of bunch centroids, m) and n) the bunch
centroids across the bunch train and potential well of bunch 0 respectively at the end of the time evolution.
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Figure 5: Numerical simulations up to 100, 000 turns with a gap g = 130 for the HHC detuning frequencies
discussed in Fig.4. The monotonic variation of the bunch centroid across the train is evident from the
longitudinal density of the bunches shown in a)-c), from the time evolution of the bunch centroids shown
in g)-i), and from m), where it can be noticed that the range of variation of the bunch centroids increases
with the decrease of the HHC detuning frequency. d)-f) and l) show the non uniform bunch lengthening
across the train, with a similar average value στ = 35ps for the different detuning frequencies.
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Figure 6: Numerical simulations up to 100, 000 turns with nominal gap g = 260, for the same HHC
detuning frequencies discussed in Fig.4. A detuning frequency threshold is observed in this case. For
detuning frequencies above the threshold, as shown for ∆f = 65kHz in c), f) and l), a stable equilibrium is
reached after 100, 000 turns, with average bunch length across the train στ ≈ 27ps, while for detuning
frequencies below threshold, as shown in a), d) and g) for ∆f = 45kHz, and b), e) and h) for ∆f = 55kHz,
an unstable regime with saturation is observed, with both bunch lengths and bunch centroids exhibiting a
well defined mode of oscillation.
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Figure 7: Numerical simulations up to 100, 000 turns with nominal gap, g = 260, and ∆f = 45kHz, for
load angle θL = 0, θL = −20◦ and θL = −40◦. A stabilizing effect from a non zero load angle is seen for
θL ∈ [−20◦, 0◦].

introduction of a non zero load is partially effective in stabilizing the HHC system, with the "stabilizing"
load angle in the range [−20◦, 0◦] for ∆f = 45kHz, and [−40◦,−20◦] for ∆f = 55kHz.
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Figure 8: Numerical simulations up to 100, 000 turns with nominal gap, g = 260, and ∆f = 55kHz, for
load angle θL = 0, θL = −20◦ and θL = −40◦. The stabilizing effect from a non zero load angle is seen
here for θL ∈ [−40◦,−20◦].

3 Conclusions
The numerical results discussed in Sec.2 clearly show a reduction in both performance and stability of
the HHC system with the increase of the gap in the uniform filling, with the case of a gap g = 130,
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Figure 9: Performance of the HHC stable settings as a function of the detuning frequency ∆f and load
angle θL for g = 260 (80% fractional filling) and g = 130 (90% fractional filling). The bunch length and
bunch centroid are labeled with BL and BC respectively.

corresponding to a 90% fractional filling, stable at all the detuning frequencies considered. On the other
hand, the nominal case with g = 260, corresponding to a 80% fractional filling, has shown to be unstable
for some values of the detuning frequencies. Moreover, the case with g = 130 has shown a superior
performance in terms of bunch lengthening with respect to the nominal case. The performance of stable
HHC settings for the nominal case g = 260 and the case g = 130, as a function of detuning frequency ∆f
and load angle θL, is shown in Fig.9, both in terms of average bunch lengthening and uniformity of the
bunch centroid and bunch length across the train. For the nominal case g = 260, the numerical result
with ∆f = 55kHz and θL = −40◦ is included in the discussion for the sake of completeness, but should be
excluded as possible operating point, since its large load angle would increase beyond acceptable limits the
generator power. The top panels in Fig. 9 show that average bunch lengthening factor for the 80% and
90% fractional filling is approximately 2 and 2.5 respectively, to be compared with the bunch lengthening
factor of the uniform filling case, which, according to Fig.4l, is approximately 3.5 for ∆f = 55kHz. The
performance reduction in the average bunch lengthening due to a gap in the uniform filling is therefore 45%
for g = 260 and 30% for g = 130. Machine studies are planned at the NSLS-II storage ring to revisit the
need of the nominal 80% fractional filling pattern for ion clearing, with the goal to increase the fractional
filling towards a more uniform filling pattern. Arbitrary, more general multibunch configurations, such
as filling patterns with multiple, smaller gaps than the nominal, are also under consideration. To this
end, an analytical calculation to determine the beam loading voltage induced by arbitrary, stationary
bunches has been done and implemented in a numerical code for fast parametric scans and guidance in
Vlasov-Fokker-Planck simulations of the HHC system [22].
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Appendix

Forcing the Equilibrium by Decreasing the Radiation Damping Time
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Figure 10: Comparison of the bunch length across the train for the case g = 260 with the nominal
radiation damping τrad = 11.8ms (red trace) and with τrad = 0.37ms (blue trace), for the 3 cases discussed
in Fig. 9: a) ∆f = 45kHz and θL = −20◦, b) ∆f = 55kHz θL = −40◦, c) ∆f = 65kHz and θL = 0◦. d)
Time evolution of the bunch length of bunch 1, 530 and 1060, with parameters of c), obtained by setting
τrad = 0.37ms up to 10, 000 turns, and by restoring it to the nominal value τrad = 11.8ms afterwords. e)
The same of d) for the energy spread.
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The apparent fluctuations displayed by the bunch length across the train, as clearly shown in Fig. 9, have
been studied by forcing the equilibrium artificially, in order to determined if the "fluctuating" behavior
was induced by numerical noise in the simulations. Fig.10 shows the results of such a study, where
the equilibrium has been forced by artificially decreasing the radiation damping from its nominal value
τrad = 11.8ms to τrad = 0.37ms. Fig. 10a, b and c show the comparison after 100, 000 turns, while Fig.
10d and Fig. 10e show simulations where for the first 10, 000 turns the radiation damping has been set
to τrad = 0.37ms, and then restored to its nominal vale . The apparent "fluctuating" behavior of the
bunch length, displayed by energy spread as well, has been observed to be numerically reproducible and
deterministic in nature, a behavior that can be the reflection of a state only marginally stable.
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